Subharmonicity, the distance function, and $a$-admissible sets
نویسندگان
چکیده
منابع مشابه
Different-Distance Sets in a Graph
A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...
متن کاملSelf-admissible sets
Best-response sets (Pearce [29, 1984]) characterize the epistemic condition of “rationality and common belief of rationality.” When rationality incorporates a weak-dominance (admissibility) requirement, the self-admissible set (SAS) concept (Brandenburger-Friedenberg-Keisler [18, 2008]) characterizes “rationality and common assumption of rationality.” We analyze the behavior of SAS’s in some ga...
متن کاملAdmissible digit sets
We examine a special case of admissible representations of the closed interval, namely those which arise via sequences of a finite number of Möbius transformations. We regard certain sets of Möbius transformations as a generalized notion of digits and introduce sufficient conditions that such a “digit set” yields an admissible representation of [0,+∞]. Furthermore we establish the productivity ...
متن کاملDense Admissible Sets
Call a set of integers {b1, b2, . . . , bk} admissible if for any prime p, at least one congruence class modulo p does not contain any of the bi. Let ρ ∗(x) be the size of the largest admissible set in [1, x]. The Prime k-tuples Conjecture states that any for any admissible set, there are infinitely many n such that n+b1, n+b2, . . . n+bk are simultaneously prime. In 1974, Hensley and Richards ...
متن کاملBarwise: infinitary logic and admissible sets
0. Introduction 1 1. Background on infinitary logic 2 1.1. Expressive power of Lω1ω 2 1.2. The back-and-forth construction 3 1.3. The Scott isomorphism theorem 4 1.4. ω-logic 7 1.5. Familiar theorems 8 1.6. Failure of compactness 9 2. Background on admissible sets 10 2.1. ∆0 formulas and Σ-formulas in set theory 10 2.2. Axioms of KP 11 2.3. Examples of admissible sets 12 2.4. The admissible set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1991
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1991-1065946-7